
297

■ ■ ■

C H A P T E R 8

Writing to the Database

So far, you’ve dealt with only read-only data—pulling some data from a database without

altering it. In this chapter, you’ll discover how to create pages that allow users to add, modify,

and delete the contents of a database. At the core of these three operations are three SQL queries:

INSERT, UPDATE, and DELETE.

First, we’ll look at modifying the data in separate pages that neatly wrap up the three

different types of operations using a Command object. Then you’ll see how to use a DataSet to

make changes to tables.

This chapter covers the following topics:

• How to use single-value and list Web controls to build a query sent directly to the data-

base with a call to ExecuteNonQuery() or ExecuteScalar()

• How to validate data entered through Web controls to make sure no invalid changes

are made

• How to use a DataSet to hold several different tables and propagate any changes back to

the database in one call to Update() through the DataAdapter

Making Changes to a Database
Those three basic steps you first heard about back in Chapter 1—creating the connection, sending

the query, and handling the results—still hold true for making changes to a database. However,

you have a lot more things to consider, and the changes must play by the database’s rules.

The main difference is in sending the query, where you’ll need to use the appropriate query

for what you want to do. The results of the query will generally be a scalar value indicating the

number of rows in the database that have changed as the result of the query. It’s your choice

whether you use this result, but it does provide quite a good indication of whether the query

that you’ve executed has worked correctly.

In this chapter, you’ll learn how to use the following queries:

• The SQL INSERT query to add new rows to a table in a database

• The SQL UPDATE query to change rows already in a database

• The SQL DELETE query to remove rows from a database

298 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Unlike the SELECT query, which just retrieves data, these three queries must obey the rules

you created when you built the database and created relationships between tables. What was

the data type for this column? What was its maximum length? Was it a key? Can it be null? The

onus is on you to make sure that the data you try to add to a table obeys its rules. As with dealing

with data for display, the basics are straightforward, but you need to expend a little more effort

to make the page user-friendly (and idiot-proof).

Inserting Data into the Database
You’ll always have information to change and new data to collect, so providing a way to add

new information to your databases is pretty crucial. Some sites may hide this functionality

away in an administration section. How inserting data is handled depends on what the database

models and who is logged on. For instance, Amazon hides the functionality to add new product

information from you, the public, but it does let you add new feedback, and user information

to its database, provided you’re logged in. Similarly, eBay allows anyone to add a new auction to its

database, but only the auctioneer can change those details. Security, then, is also a very impor-

tant issue to consider.

The INSERT Query

At the heart of the code to add new information to a database is the SQL INSERT query. Although

it may seem otherwise, sending an INSERT query to a database is the only way to do this. Compared

to the complexities of the SELECT query, the INSERT query is quite simple.

INSERT [INTO] <table name>

[(column list)]

VALUES (column value list)

The query doesn’t need to be split over three lines, but that format makes it easier to see

that it has six pieces:

• The keyword INSERT denotes the action to the database.

• The optional keyword INTO makes the query more readable.

• The table name identifies the table to which you’re adding information.

• The (comma-separated) column list names the columns in the new row to which you’re

giving values. Although this isn’t required, it is a good idea to specify it. It makes the

query easier to follow and can reduce the risk of problems when you make changes to

the database structure.

• The keyword VALUES separates the column list from the column value list.

• The (comma-separated) column value list contains a value for each of the columns in

the column list for the new row. The number of the items in the column list should

equal the number of items in the column value list and be ordered in the same way.

Thus, the first column named in the column list will be filled with the first value in the

column value list, the second with the second, and so on. Each value can be one of the

following:

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 299

• A literal

• An expression saying how a value is to be determined from the values of other columns

(firstname + surname, for example)

• The keyword DEFAULT, indicating that the column should take its default value as

defined in the database

• NULL

With this in mind, it shouldn’t be too difficult to construct a simple INSERT query for any of

the four tables in the sample database. To insert a new Player, for instance, you could use the

following query:

INSERT Player (PlayerName, PlayerManufacturerID, PlayerCost, PlayerStorage)

VALUES ('New Player', 1, '199.99', 'Solid State')

As you’ll recall, the Player table actually has five columns, and you have not specified one

of them. This isn’t an error!

If a column is an identity column or has a default value, then you don’t need to specify it

when you’re adding a new row; the database takes care of populating the column. So, even though

you haven’t specified the PlayerID column, the value is entered automatically by the database.

It’s also possible to insert data into a database using the INSERT query without specifying

the columns you want to insert the data into, as long as you specify the data for all the columns

(bar the identity columns) in the order they appear in the database. Even columns that have

default values must be specified.

So, you could change the previous INSERT query to the following without any problems:

INSERT Player

VALUES ('New Player', 1, '199.99', 'Solid State')

Although inserting data without specifying a list of columns is perfectly valid, it makes

more sense to name the columns. As with the SELECT query, specifying the columns makes the

query slightly quicker and shows which columns you’re trying to affect. With the INSERT query,

it also avoids putting data in the wrong column if columns have been added to or removed

from the table.

■Note One point to remember about INSERT is that it works with only a single table at a time. If you’re

working with complex data that would be sourced from two or more tables in a database, you’ll need to write

an INSERT query for each table to be updated. For example, to add details for a new Player to the sample

database, you would have to write an INSERT query for both the Player table and the WhatPlaysWhatFormat

table at the least. If the new Player were manufactured by a Manufacturer not in the database, you would need

to create an INSERT query for the Manufacturer table as well.

The database-generation scripts in the code download for this book illustrate this point.

The scripts contain INSERT queries for each row in each table, with each table populated in the

correct order so that no data entry breaks any of the database constraints.

300 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Working to the Database’s Rules

Unlike playground rules, database rules aren’t made to be broken, and you need to keep the

following in mind when you’re inserting new data into a table using INSERT:

Primary keys: You must provide a unique value for the column(s) in a table’s primary key.

If you don’t, the database will return an error. Thus, you need to ensure that when you

insert a new row into a table using INSERT, it contains a valid and unique value for the primary

key. Things are a bit simpler if the primary key you use in the table is an identity column, such

as the PlayerID column in the Player table, the ManufacturerID column in the Manufacturer

table, or the FormatID column in the Format table. By establishing such a primary key,

you can omit this column from the INSERT query’s column list, because the database will

automatically generate the value for you as you add the new row.

Foreign keys: If one of the columns in a table is a foreign key, you must ensure that any

value you try to add to that column already exists as a value for the primary key in the

corresponding table. When adding a Player, for example, the Manufacturer must exist

before you can use it for the Player.

Mandatory columns: If a table doesn’t allow a column to be null, you must give it a value

when you add a new row. Either the user provides a value or you give it a default value

when the user doesn’t.

Column data types: Each column must be given a value of the appropriate type.

Each of these rules complicates things. Can you ensure that values are unique? What Web

controls best suit data entry for each column? How do you enter a default value and make sure

a column is given a certain value? You’ll learn the answers to these questions as you work

through this chapter’s examples.

Try It Out: Inserting a New Player with INSERT

In this example, you’ll build a page that allows you to add details of a new Player to the sample

database. However, you won’t include the selection of the supported Formats for the Player,

which is handled in a later example.

1. In Visual Web Developer, create a new Web site at C:\BAND\Chapter08 and delete the

auto-generated Default.aspx file.

2. Add a new Web.config file to the Web site and add a new setting to the

<connectionStrings /> element:

<add name="SqlConnectionString"

 connectionString="Data Source=localhost\BAND;Initial Catalog=Players;

 Persist Security Info=True;User ID=band;Password=letmein"

 providerName="System.Data.SqlClient" />

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 301

3. Add a new Web Form to the Web site called Players.aspx. Make sure that the Place Code

in Separate File check box is unchecked.

4. In the Source view, find the <title> tag within the HTML at the bottom of the page and

change the page title to Players.

5. Switch to the Design view and add a SqlDataSource to the page. Choose to configure the

data source and use SqlConnectionString to connect to the database. Select the PlayerID,

PlayerName, and PlayerCost columns from the Player table to configure the SELECT query.

6. Switch back to the Source view and add the following markup after the definition of the

SqlDataSource:

<asp:HyperLink ID="HyperLink1" runat="server"

 NavigateUrl="./Player_Insert.aspx">Add player</asp:HyperLink>

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"

 DataSourceID="SqlDataSource1">

 <Columns>

 <asp:BoundField DataField="PlayerID" HeaderText="PlayerID" />

 <asp:BoundField DataField="PlayerName" HeaderText="Name" />

 <asp:BoundField DataField="PlayerCost" DataFormatString="{0:n}"

 HeaderText="Cost" />

 </Columns>

</asp:GridView>

7. Add a new Web Form to the Web site called Player_Insert.aspx. Make sure that the

Place Code in Separate File check box is unchecked.

8. In the Source view, find the <title> tag within the HTML at the bottom of the page and

change the page title to INSERT Player. Add the required Import statement to the top of

the page:

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data.SqlClient" %>

9. Add some Web controls to allow the addition of the Player to the database: a Button

to insert the Player, a Button to return to the list of Players, a TextBox for the user to add

the Player’s name, a DropDownList for the Manufacturer, a TextBox for the Player’s cost,

and a final TextBox to specify the storage type for the Player. Call these SubmitButton,

ReturnButton, PlayerName, ManufacturerList, PlayerCost, and PlayerStorage, respectively.

Also add a Label, called QueryResult, to show the results from the query that was actually

executed. You can see how the Web controls are laid out in Figure 8-1.

302 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Figure 8-1. The Web control layout for Player_Insert.aspx

10. Add a Page_Load event handler to the page, as follows:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // populate the list of manufacturers

 PopulateManufacturers();

 }

}

11. Add the PopulateManufacturers() method:

private void PopulateManufacturers()

{

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

 try

 {

 // query to execute

 string strQuery = "SELECT ManufacturerID, ManufacturerName ➥

 FROM Manufacturer ORDER BY ManufacturerName";

 // create the command

 SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 303

 // open the database connection

 myConnection.Open();

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set the data source and bind

 ManufacturerList.DataSource = myReader;

 ManufacturerList.DataTextField = "ManufacturerName";

 ManufacturerList.DataValueField = "ManufacturerID";

 ManufacturerList.DataBind();

 // close the reader

 myReader.Close();

 }

 finally

 {

 // always close the database connection

 myConnection.Close();

 }

}

12. Switch to the Design view of the page and add a DataBound event handler for the

ManufacturerList control. Add the following code to the event handler:

protected void ManufacturerList_DataBound(object sender, EventArgs e)

{

 ListItem myListItem = new ListItem();

 myListItem.Text = "please select...";

 myListItem.Value = "0";

 ManufacturerList.Items.Insert(0, myListItem);

}

13. With the Web control layout sorted and populated as required, you need to implement

the code to insert the Player into the database. Switch back to the Design view of the

page and double-click the SubmitButton control to add a Click event handler. Add the

following code to the event handler:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 // save the player to the database

 int intPlayerID = SavePlayer();

 // did an error occur?

 if (intPlayerID == -1)

 {

 QueryResult.Text = "An error has occurred!";

 }

304 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 else

 {

 // show the result

 QueryResult.Text = "Save of player '" + intPlayerID.ToString()

 + "' was successful";

 // disable the submit button

 SubmitButton.Enabled = false;

 }

}

14. To insert the Player into the database, you call a function named SavePlayer(). This

function returns the PlayerID for the new entry, or it returns -1 if an error occurs:

private int SavePlayer()

{

 int intPlayerID = 0;

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

 try

 {

 // query to execute

 string strQuery = "INSERT Player (PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage) VALUES (@Name, @ManufacturerID, ➥

 @Cost, @Storage); SELECT SCOPE_IDENTITY();";

 // create the command

 SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

 // add the parameters

 myCommand.Parameters.AddWithValue("@Name", PlayerName.Text);

 myCommand.Parameters.AddWithValue("@ManufacturerID",

 ManufacturerList.SelectedValue);

 myCommand.Parameters.AddWithValue("@Cost", PlayerCost.Text);

 myCommand.Parameters.AddWithValue("@Storage", PlayerStorage.Text);

 // open the connection

 myConnection.Open();

 // execute the query

 intPlayerID = Convert.ToInt32(myCommand.ExecuteScalar());

 }

 catch

 {

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 305

 // return -1 to indicate error

 intPlayerID = -1;

 }

 finally

 {

 // close the connection

 myConnection.Close();

 }

 // return the ID

 return(intPlayerID);

}

15. Finally, you need to provide a means for the user to return to the list of Players. Switch to

the Design view and double-click the ReturnButton. Add the following code to the Click

event handler:

protected void ReturnButton_Click(object sender, EventArgs e)

{

 Response.Redirect("./Players.aspx");

}

16. Save the page, and then open the Web site in your browser. In the list of Players, click the

Add Player link. On the following page, add the details for a new Player. Then click the

Insert Player button to execute the INSERT query and return the ID of the Player added,

as shown in Figure 8-2.

Figure 8-2. Adding a new Player to the database

306 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

17. Click the Return to Player List button. You’ll see that the new Player has been added to

the end of the list of Players, as shown in Figure 8-3.

Figure 8-3. The new Player added to the database

How It Works

This example has provided you with the means to add a Player to the database. The first 12 steps

of the example should be quite familiar to you by now. You built a page that lists basic details

for all of the Players in the database using a SqlDataSource and a GridView. We looked at table

binding a GridView in Chapter 7.

The second page is the one that lets you insert data into the database.

Web Control Selection

The first stage of this page needs to take the rules of the sample database into consideration.

You’re adding a new row to the Player table, so the first task is to figure out which Web control

is most suitable for adding the value for each column, as follows:

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 307

PlayerID: This is the primary key for the Player table, but it’s also an identity column, so

you don’t need to insert a value for this column. It will be added for you automatically.

PlayerName: A Player’s name is just text, so a TextBox is appropriate.

PlayerManufacturerID: This is a foreign key from the Manufacturer table, so it can hold

only values already in the Manufacturer table. It makes sense to give the user a choice of

Manufacturers from a list, so you use a DropDownList and bind the ManufacturerName to

DataTextField and the ManufacturerID to DataValueField. You could use any data-aware

list Web control, but DropDownList works fine.

PlayerCost: The cost of the Player is a decimal, and the best way for entering this value is

using a TextBox.

PlayerStorage: At this point, it becomes obvious that the sample database design is (delib-

erately) flawed and that the Storage Type entries should really be in their own table. This

would mean you could bind the available Storage Types to a list Web control and keep

control of the Storage Types for the Players. But since the types are in the Player table,

we’re allowing users to enter any Storage Type that they want. This is a good example of

one of the repercussions of bad database design.

The list of Manufacturers is populated using a simple query to return just the ManufacturerID

and ManufacturerName columns from the Manufacturer table. You saw how to do this in

Chapter 6. You could also have used a SqlDataSource to populate the DropDownList.

Once the Web controls are set up as required, the user can enter the details of the new

Player and click the Insert Player button to save the Player to the database. Here, you see the

first problem with the page.

Error Handling

Rerun the Web site and enter a new Player without a name, cost, or storage type. Now save the

Player. Instead of the Player being saved, an error has been trapped and an error message

displayed, as shown in Figure 8-4.

Entering invalid data and trying to save it causes a SqlException to be raised and handled

by the catch clause of your data-access code. If you add a breakpoint to the code within the

catch clause, you’ll see that the exception is thrown because you’re trying to convert an empty

string (an nvarchar) to a numeric value, and it’s not a valid cast. Figure 8-5 shows this information.

A multitude of different errors can arise if you don’t validate entries made by the user

when inserting and updating data to the database. We’ll look at validating the user’s input in

the “Validating Data” section later in this chapter, and you’ll update this example so that invalid

data can’t make its way to the database. For now, you must enter values in all of the columns.

308 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Figure 8-4. Invalid data causes exceptions, which thankfully are trapped.

Figure 8-5. When debugging, you can see the details of the raised exception.

Database Record Insertion

The part of the example of particular interest is the SubmitButton_Click event handler:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 // save the player to the database

 int intPlayerID = SavePlayer();

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 309

 // did an error occur?

 if (intPlayerID == -1)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

 // show the result

 QueryResult.Text = "Save of player '" + intPlayerID.ToString()

 + "' was successful";

 // disable the submit button

 SubmitButton.Enabled = false;

 }

}

The SubmitButton_Click event handler calls the SavePlayer() method to save the Player to

the database, and this method returns the PlayerID value for the new Player, or it returns -1

if an error has occurred. If you don’t have a valid PlayerID, you know that something has gone

wrong, and you display an error message to the user. If the returned PlayerID is valid (not equal

to -1), you can assume that the Player has been added to the database, and you display a

success message showing the PlayerID of the Player just added to the database. If the Player has

been added successfully, you also disable the SubmitButton, so that you can’t save the details for

the same Player twice by accident. (Of course, there is nothing stopping the user from adding

the exact same Player again and again!)

The SavePlayer() method is responsible for taking the details entered by the user and

saving these details, using an INSERT query to the database:

INSERT Player (PlayerName, PlayerManufacturerID, PlayerCost, PlayerStorage)

VALUES (@Name, @ManufacturerID, @Cost, @Storage);

This should look familiar, as it was the example used in the earlier introduction to the

INSERT query, but instead of having actual values in the column value list, you’re using

parameters that you add using the AddWithValue method:

// add the parameters

myCommand.Parameters.AddWithValue("@Name", PlayerName.Text);

myCommand.Parameters.AddWithValue("@ManufacturerID",

 ManufacturerList.SelectedValue);

myCommand.Parameters.AddWithValue("@Cost", PlayerCost.Text);

myCommand.Parameters.AddWithValue("@Storage", PlayerStorage.Text);

You’re using a parameterized INSERT query in the interest of security. You could just build

the query with string concatenation, but as you learned in Chapter 4, parameters prevent users

from trying to harm your database by sending malevolent SQL instructions through the TextBox.

Once the Command object is created and the parameters added correctly, you execute the

query against the database. But if you look at the code for the page, you’ll see that the query

that you’re going to execute isn’t quite what you just saw. In fact, the query that you send to the

database is actually a query batch of two separate SQL queries: an INSERT and a SELECT query:

310 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

INSERT Player (PlayerName, PlayerManufacturerID, PlayerCost, PlayerStorage)

 VALUES (@Name, @ManufacturerID, @Cost, @Storage);

SELECT SCOPE_IDENTITY();

When sending a query to a SQL Server 2005 database, you can actually send multiple

queries, separated by semicolons. You want to insert the Player into the database, but you also

want to know the PlayerID of the Player that you’ve added. In this example, you display the

PlayerID as a confirmation that the Player has been added to the database. In the next example,

you’ll use this PlayerID when adding the details of the Formats that the Player supports.

When using a column defined as an identity column, you can use the SCOPE_IDENTITY()

function to retrieve the value of that column. In order to return the value from this function,

you can use it as a column in a SELECT query.

■Note The system variable @@IDENTITY returns the value of the identity column last entered. In this

instance, both the SCOPE_IDENTITY() function and the @@IDENTITY system variable would return the

same value. However, in cases when you’re using triggers, the @@IDENTITY system variable may return the

wrong value; if the trigger also does an INSERT, it may return the identity value from a different table, whereas

the SCOPE_IDENTITY() function returns the identity value from the original table. You should always use the

SCOPE_IDENTITY() function to prevent any problems if triggers are added to your tables later.

Thus, when you execute this query, you do so by calling ExecuteScalar() rather than

ExecuteNonQuery() so you can capture the new PlayerID. ExecuteScalar() returns a generic

object, rather than a string or an integer, so you cast it to an integer to make it easier to handle:

// execute the query

intPlayerID = Convert.ToInt32(myCommand.ExecuteScalar());

If there was an error when inserting the Player, an exception is thrown. You catch this and

set the PlayerID to -1 to indicate that the INSERT query failed:

catch

{

 // return -1 to indicate error

 intPlayerID = -1;

}

Although all you’re doing here is setting a flag to indicate that there has been an error,

you’re free to perform any other actions you want. If you want to send an e-mail message to the

Web site administrator informing her that a problem has occurred, you can do so. Just be careful

that your error-handling code doesn’t throw an exception, as that would cause a runtime error to

be displayed to the user!

Once you’ve executed the query and returned the PlayerID, you exit from the SavePlayer()

method and either display an error message or a confirmation to the user. At this point, the

user can return to the list of Players to confirm that the new Player has been added and to add

another Player if desired.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 311

Queries in MySQL 5.0 and Microsoft Access

Before we move on to the next example and add the Format information, we’ll quickly look at

two areas where SQL Server 2005 differs from MySQL 5.0 and Microsoft Access:

• Only when using the SQL Server data provider to connect to SQL Server 2005 can you use

named parameters. Neither the ODBC data provider when connecting to MySQL 5.0 nor

the OLE DB data provider (which we use to connect to Microsoft Access) support named

parameters. With those data providers, you need to add parameters in the order in which

they appear in the query.

• Neither MySQL 5.0 nor Microsoft Access allows multiple queries to be executed as part

of the same query batch, and neither supports the SCOPE_IDENTITY() function.

Parameters and Queries in MySQL 5.0 and Microsoft Access

As you’ve learned in earlier chapters, you can’t use named parameters with MySQL 5.0 or

Microsoft Access using the Odbc or OleDb data providers. You need to change the query that you

want to execute and add the parameters to the parameters collection in the correct order.

For MySQL 5.0, replace the named parameters with the question mark character:

INSERT Player (PlayerName, PlayerManufacturerID, PlayerCost, PlayerStorage)

VALUES (?, ?, ?, ?)

The query required for Microsoft Access is similar, except you must also specify the

INTO keyword:

INSERT INTO Player (PlayerName, PlayerManufacturerID, PlayerCost,

 PlayerStorage)

VALUES (?, ?, ?, ?)

Once the query is defined correctly, the parameters are added in the order in which

they’re required:

myCommand.Parameters.AddWithValue("?", PlayerName.Text);

myCommand.Parameters.AddWithValue("?", ManufacturerList.SelectedValue);

myCommand.Parameters.AddWithValue("?", PlayerCost.Text);

myCommand.Parameters.AddWithValue("?", PlayerStorage.Text);

Identity Values and MySQL 5.0 and Microsoft Access

Retrieving the identity value for a new row in a table requires two different queries to be executed.

SQL Server 2005 allows you to execute these queries as part of the same query batch to the data-

base by separating the queries with semicolons. However, neither MySQL 5.0 nor Microsoft Access

supports this functionality. Therefore, you need to make two distinct queries to the database:

the INSERT query to add the Player and a SELECT query to return the PlayerID.

For MySQL 5.0, this is relatively easy, as there is a corresponding function: LAST_INSERT_ID()

returns the value you’re after. So, you create two queries and execute these one after the other:

312 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

// create the INSERT query

string strQuery1 = "INSERT Player (PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage) VALUES (?, ?, ?, ?);";

OdbcCommand myCommand1 = new OdbcCommand(strQuery1, myConnection);

// add the parameters

myCommand1.Parameters.AddWithValue("?", PlayerName.Text);

myCommand1.Parameters.AddWithValue("?", ManufacturerList.SelectedValue);

myCommand1.Parameters.AddWithValue("?", PlayerCost.Text);

myCommand1.Parameters.AddWithValue("?", PlayerStorage.Text);

// create the SELECT query

string strQuery2 = "SELECT LAST_INSERT_ID();";

OdbcCommand myCommand2 = new OdbcCommand(strQuery2, myConnection);

// open the connection

myConnection.Open();

// execute the queries we need to execute

myCommand1.ExecuteNonQuery();

intPlayerID = Convert.ToInt32(myCommand2.ExecuteScalar());

// close the connection

myConnection.Close();

You’ll still wrap all of the above code in a try..catch..finally block, so that if there is a

problem, you can set the PlayerID value to -1 to indicate that an error occurred.

To get the identity value in Microsoft Access, you can use the @@IDENTITY system variable.

So, simply execute a different query to return the identity value:

// create the SELECT query

string strQuery2 = "SELECT @@IDENTITY;";

OleDbCommand myCommand2 = new OleDbCommand(strQuery2, myConnection);

// open the connection

myConnection.Open();

// execute the queries we need to execute

myCommand1.ExecuteNonQuery();

intPlayerID = Convert.ToInt32(myCommand2.ExecuteScalar());

You’ll see these versions of getting the value of the PlayerID column in the code download

for this book.

Try It Out: Setting the Player’s Supported Formats

Now that we’ve looked at how to add the basic details for the Player, let’s see how to add the

Player’s supported Formats.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 313

1. Open Players_Insert.aspx and switch to the Design view.

2. Add a new CheckBoxList before the Insert Player button. Rename it FormatList, set its

RepeatColumns property to 4 and its RepeatDirection to Horizontal. The layout should

now be as shown in Figure 8-6.

Figure 8-6. The new layout showing the Supported Formats CheckBoxList

3. Switch to the Source view and modify the Page_Load event as follows:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // populate the list of manufacturers

 PopulateManufacturers();

 // populate the list of formats

 PopulateFormats();

 }

}

4. Add the new PopulateFormats() method:

private void PopulateFormats()

{

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

314 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 try

 {

 // query to execute

 string strQuery = "SELECT FormatID, FormatName FROM Format ➥

 ORDER BY FormatName";

 // create the command

 SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

 // open the database connection

 myConnection.Open();

 // run query

 SqlDataReader myReader = myCommand.ExecuteReader();

 // set the data source and bind

 FormatList.DataSource = myReader;

 FormatList.DataTextField = "FormatName";

 FormatList.DataValueField = "FormatID";

 FormatList.DataBind();

 // close the reader

 myReader.Close();

 }

 finally

 {

 // always close the database connection

 myConnection.Close();

 }

}

5. Modify the SubmitButton_Click event handler as follows:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 // save the player to the database

 int intPlayerID = SavePlayer();

 // did an error occur?

 if (intPlayerID == -1)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 315

 // save the formats for the player

 bool blnError = SaveFormats(intPlayerID);

 // did an error occur?

 if (blnError == true)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

 // show the result

 QueryResult.Text = "Save of player '" + intPlayerID.ToString()

 + "' was successful";

 // disable the submit button

 SubmitButton.Enabled = false;

 }

 }

}

6. Add the new SaveFormats() method as follows:

private bool SaveFormats(int intPlayerID)

{

 bool blnError = false;

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

 try

 {

 // query to execute

 string strQuery = "INSERT WhatPlaysWhatFormat(WPWFPlayerID, ➥

 WPWFFormatID) VALUES (@PlayerID, @FormatID)";

 // create the command

 SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

 // add the two parameters

 myCommand.Parameters.AddWithValue("@PlayerID", intPlayerID);

 myCommand.Parameters.Add("@FormatID", System.Data.SqlDbType.Int);

 // open the connection

 myConnection.Open();

316 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 // loop through each of the formats

 foreach (ListItem objFormat in FormatList.Items)

 {

 // save if selected

 if (objFormat.Selected == true)

 {

 // set the parameter value

 myCommand.Parameters["@FormatID"].Value = objFormat.Value;

 // execute the query

 myCommand.ExecuteNonQuery();

 }

 }

 }

 catch

 {

 // indicate that we have an error

 blnError = true;

 }

 finally

 {

 // close the connection

 myConnection.Close();

 }

 // return the error flag

 return(blnError);

}

7. Save the page, and then open the Web site in your browser. In the list of Players, click the

Add Player link, and you’ll see that the list of Formats is populated. Enter the details for

a new Player, and this time, specify the Formats that the Player supports.

8. Click the Insert Player button to save the Player to the database, along with the Formats

it supports, as shown in Figure 8-7.

9. To see that the Format details have been saved to the database correctly, you can perform a

SELECT query against the WhatPlaysWhatFormat table. The Player added has a PlayerID

of 27, so look for this in the WPWFPlayerID column. As you can see in Figure 8-8, the

two Formats have been added correctly.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 317

Figure 8-7. The supported Formats are also saved.

Figure 8-8. The supported Formats have been saved to the database.

How It Works

With a bit more work, you’ve added the ability to save the supported Formats for a Player to the

database. In order to do this, you need to perform two steps:

• Display the options on the page that may be selected in a suitable Web control.

• Save the selected options correctly to the database.

318 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Because of the way that you structured the code for the first example, you can quite easily

perform these two steps by adding two new functions: PopulateFormats() and SaveFormats().

The PopulateFormats() method displays the available Formats. You’re showing a list of

Formats, so you’re going to be using one of the Web controls that support list binding, as described

in Chapter 6. You need to allow the user to select multiple options, so you have only two choices:

a CheckBoxList or a ListBox. You’ve used a CheckBoxList as it allows the selection of multiple

entries with a single click, so the user doesn’t need to use a combination of keyboard presses

and mouse clicks to select multiple Formats.

The code within the PopulateFormats() method should be familiar to you by now. You return

a list of FormatID and FormatName pairs using a simple query, and then set the DataTextField and

DataValueField properties on the CheckBoxList.

It’s within the SaveFormats() method that the real work occurs. The first part of the method

should be familiar by now. You create a Connection object to connect to the database and a

Command object populated with the correct INSERT query:

INSERT WhatPlaysWhatFormat(WPWFPlayerID, WPWFFormatID)

VALUES (@PlayerID, @FormatID)

Both parameters are then added to the Parameters collection:

// add the two parameters

myCommand.Parameters.AddWithValue("@PlayerID", intPlayerID);

myCommand.Parameters.Add("@FormatID", System.Data.SqlDbType.Int);

You already know the @PlayerID parameter value, as you retrieved it from the SavePlayer()

method, and it is fixed for this Player, so you can use the AddWithValue() method to add it. But

the @FormatID parameter is different. You’re allowing the user to select multiple values, so you

can’t just add the parameter value and execute the query. You can add the parameter without

a value using the Add() method, and then set its value later before you execute the query.

You check which Formats have been selected by using a foreach loop to work through

all of the possible Formats (returned as ListItem objects from the Items collection of the

CheckBoxList) and execute the INSERT query for each Format that is selected:

// loop through each of the formats

foreach (ListItem objFormat in FormatList.Items)

{

 // save if selected

 if (objFormat.Selected == true)

 {

 // set the parameter value

 myCommand.Parameters["@FormatID"].Value = objFormat.Value;

 // execute the query

 myCommand.ExecuteNonQuery();

 }

}

If the Format is selected, the Selected property will return true, and you can set the parameter

value to be the Value of the ListItem. The ExecuteNonQuery() method is then used to execute

the INSERT query against the database.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 319

Note that you open the connection to the database only once, and you close the database

connection only once. You’re reusing the connection for each of the INSERT queries that you’re

executing. Now this goes a little against my “open late, close early” mantra, as you’re keeping

the connection open for longer than is necessary. However, in this case, the foreach loop is

quick enough for the open connection to not be an issue.

Validating Data
The previous two examples have demonstrated how to add data to the database using INSERT

queries. You also saw that it’s quite easy to cause runtime errors by not entering valid data.

Although you trapped these errors and handled them before the user saw the dreaded ASP.NET

runtime error page, it would be much better to guard against these errors before they occur.

You need to validate the data that the user enters before you attempt to insert the data into the

database. The same is also true when you update data, as you’ll see later in this chapter.

Whether you want to ensure that the user has entered a value of the required format

(such as an e-mail address), entered a value within a range (such as a number between 1 and 10),

or entered any value, ASP.NET provides Web controls to perform validation for you. The

different validation Web controls are shown in Table 8-1. In addition to the Web controls for

actually validating the user’s input, another Web control displays the results of the validation:

ValidationSummary.

Each of the validation Web controls can be executed either at the client or at the server.

If you choose to use client-side validation (the default), a postback will not occur, giving a

richer user experience. However, in certain cases, a postback must occur before validation

can continue. For example, if you’re validating for a unique username when creating a user

account, you must check against the database that the username hasn’t already been used.

Table 8-1. The Validation Controls

Name Description

CompareValidator The CompareValidator compares the value entered by the user
with either a constant value or the value entered in another
Web control.

RangeValidator The RangeValidator checks that the value entered is between
two specified values.

RegularExpressionValidator The RegularExpressionValidator checks that the value entered
matches the specified regular expression.

RequiredFieldValidator The RequiredFieldValidator checks that a Web control
contains a value.

CustomValidator If none of the other four validators match your requirements,
the CustomValidator allows you to define your own validation
routines.

320 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

■Caution In the default state of the validation Web controls, the validation is performed at the client as well

as at the server. However, it is quite possible for users to disable JavaScript in their browser and turn off the

client-side validation, and post the page to the server with invalid data. The validation always runs at the

server, even if you have client-side validation turned on. You should always check that any validation has been

done before allowing changes to be made to the database.

The validation Web controls all expose a ControlToValidate property that specifies the ID

of the Web control that is to be validated. The Web controls that can be validated automatically

are shown in Table 8-2. For those Web controls that don’t support automatic validation, you’ll

need to use a CustomValidator control for validation. For example, since there’s no way to

automatically validate that a user selected a value from a CheckBoxList, in our example, you’ll

have to write a CustomValidator to ensure that the user has selected at least one supported

Format for the new Player.

Table 8-2 also lists the property of the Web control that the validator accesses to perform the

validation. At this point, warning signs should be flashing. How can you use the SelectedItem

from a ListBox with a RegularExpressionValidator? The validation Web controls are a little

more clever than you may initially think, and for the Web list controls, the validator will actually

look at the Value property of the SelectedItem.

Now let’s try using the various validation Web controls to improve the page for entering a

new Player.

Table 8-2. Controls That Can Be Validated Automatically

Control Property Validated

DropDownList SelectedItem

FileUpload FileBytes

HtmlInputFile Value

HtmlInputPassword Value

HtmlInputText Value

HtmlSelect Value

HtmlTextArea Value

ListBox SelectedItem

RadioButtonList SelectedItem

TextBox Text

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 321

Try It Out: Validating Entered Data

In this example, you’ll update the previous example to add validation Web controls to prevent

the user from entering incorrect data into the database.

1. Open Players_Insert.aspx and switch to the Design view.

2. Add a ValidationSummary from the Validation tab of the Toolbox to the top of the page.

3. Add a RequiredFieldValidator to the start of the Player Name line. Set its Display property

to Dynamic, Text property to *, and ErrorMessage property to You must enter a name.

Finally set the ControlToValidate property to PlayerName. The page should look like

the one shown in Figure 8-9.

Figure 8-9. Adding the first validation Web controls

4. Save the page, and then view it in your browser. Try saving a Player without a name.

As soon as you click the Insert Player button, you’ll receive an error, as shown in Figure 8-10,

without a postback to the server being made.

322 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Figure 8-10. The validation Web controls in action

5. Add a CompareValidator to the start of the Manufacturer line. Set its properties as follows:

• Display: Dynamic

• Text: *

• ErrorMessage: You must select a manufacturer

• ControlToValidate: ManufacturerList

• Operator: NotEqual

• ValueToCompare: 0

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 323

6. Add a RequiredFieldValidator to the start of the Player Cost line. Set its properties

as follows:

• Display: Dynamic

• Text: *

• ErrorMessage: You must enter a cost

• ControlToValidate: PlayerCost

7. Add a RegularExpressionValidator to the start of the Player Cost line. Set its properties

as follows:

• Display: Dynamic

• Text: *

• ErrorMessage: You must specify the cost as a decimal

• ControlToValidate: PlayerCost

• ValidationExpression: ^\d+(\.\d\d)

8. Add a RequiredFieldValidator to the start of the Player Storage line. Set its properties

as follows:

• Display: Dynamic

• Text: *

• ErrorMessage: You must enter a storage type

• ControlToValidate: PlayerStorage

9. Add a CustomValidator to the start of the Supported Formats text. Set its properties

as follows:

• Display: Dynamic

• Text: *

• ErrorMessage: You must select at least one format

10. Double-click the CustomValidator to add the server-side validation event. Add the

following code to the event handler:

protected void CustomValidator1_ServerValidate(object source,

 ServerValidateEventArgs args)

{

 if (FormatList.SelectedIndex == -1)

 {

 args.IsValid = false;

 }

}

324 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

11. Save the page, and then view it in your browser. Try testing the different combinations

of validators. You’ll see that they won’t let you save the Player until all of the data entered is

valid. But there’s still a problem. Enter the data correctly, but don’t select any Formats.

As you can see in Figure 8-11, you’ll get the correct validation error, but the Player will

still been saved.

Figure 8-11. A validation error occurs, but the Player is still saved.

12. You want to save the page only if all of the validators on the page are valid. Modify the

SubmitButton_Click event handler as follows:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 // only save if valid

 if (Page.IsValid == true)

 {

 // save the player to the database

 int intPlayerID = SavePlayer();

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 325

 // did an error occur?

 if (intPlayerID == -1)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

 // save the formats for the player

 bool blnError = SaveFormats(intPlayerID);

 // did an error occur?

 if (blnError == true)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

 // show the result

 QueryResult.Text = "Save of player '" + intPlayerID.ToString()

 + "' was successful";

 // disable the submit button

 SubmitButton.Enabled = false;

 }

 }

 }

}

13. Rerun the page, and now try to save the new Player without any Formats selected. This

time, the Player won’t be saved. Select at least one Format, and the page will now add

the Player to the database.

How It Works

In this example, you used four out of the five available validators to prevent the user from

saving a Player to the database with incorrect data, and you used both client and server-side

validators.

Validator Properties

Although you used four different validator types on this page, three properties are common

across all of the validators:

• Display: This determines how the validator is displayed on the page. The default value of

Static always reserves space for the Web control on the page, even if it isn’t being displayed.

Setting this property to None will not show the Web control on the page (although the

ErrorMessage will appear in a ValidationSummary). Setting it to Dynamic displays the Web

control only if it’s invalid.

326 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

• ErrorMessage: The ErrorMessage property sets the text that will be displayed in a

ValidationSummary (if one exists on the page) if the validation for the Web control fails.

• Text: The Text property sets the text displayed as the validator when validation fails.

When you’re using a ValidationSummary, the Text property is usually used simply to

highlight which validator has failed.

All of the validation Web controls, other than the CustomValidator, also set the

ControlToValidate property. This specifies the ID of the Web control that is being validated.

You can also set this property for a CustomValidator, but in the majority of cases, it won’t be

used. If you’re using a CustomValidator because a normal validator won’t work, you’ll need to

interrogate the Web control directly in code.

The ValidationSummary Web Control

The first Web control that you have on the page is the ValidationSummary. It is here that the

different validation Web controls display their ErrorMessage if the validation fails. It isn’t necessary

to have this Web control on the page for validation to work, but it provides a handy location for

all of the validation errors to be displayed.

The RequiredFieldValidator Web Control

The RequiredFieldValidator needs no configuration other than the Display, ErrorMessage,

Text, and ControlToValidate properties that we’ve already discussed. As you saw in the example,

if you don’t specify a value for a Web control that has a RequiredFieldValidator attached to it,

the validation will fail.

The CompareValidator Web Control

The CompareValidator allows you to compare the value of the attached Web control against

either another Web control (using the ControlToCompare property) or against a specific value

(using the ValueToCompare property). In this example, you need to ensure that a Manufacturer

has been selected, and you can use a specific value comparison, since you know that the

“please select...” entry has a value of 0 (zero). You can then set the ValueToCompare property

to 0 and set the Operator property to NotEqual to ensure that the user has selected a value that

isn’t equal to 0.

As well as checking for NotEqual comparisons, the Operator also allows you to perform

various other checks:

• Equal (default)

• GreaterThan

• GreaterThanEqual

• LessThan

• LessThanEqual

• NotEqual

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 327

The CompareValidator also allows you to perform a further validation check. By setting the

Operator property to DataTypeCheck, you can check that the value of the ControlToValidate is

of a specific type. If you choose this type of check, the ControlToCompare and ValueToCompare

properties are ignored, and only a check for a value that is of the correct type is performed. You

specify the type allowed using the Type property, which can be one of the following values:

• Currency

• Date

• Double

• Integer

• String (default)

■Note In this example, you could have used a CompareValidator to ensure that the cost of

the Player was entered correctly. However, you used a RegularExpressionValidator rather

than a CompareValidator, simply because it demonstrated another type of validator.

The RegularExpressionValidator Web Control

The RegularExpressionValidator allows you to check that the value entered matches a specific

regular expression by setting the ValidationExpression property to the regular expression you

want to use.

Any valid regular expression can be used, and Visual Web Developer provides you with

several standard ones (an e-mail address and Web address, for instance). You’re checking that

the entered value is a decimal, so you need to define your own regular expression as follows:

^\d+(\.\d\d)

A decimal is any number of digits followed by a decimal point, then two decimal digits.

■Tip A good place to look for regular expressions that meet your requirements is http://www.

regexlib.com. Also refer to Regular Expression Recipes for Windows Developers: A Problem-Solution

Approach by Nathan A. Good (1-59059-497-5; Apress, 2005).

The CustomValidator Web Control

The CustomValidator allows you to perform any validation that you require. You can perform

this validation on the client side if you write a function in JavaScript and then pass its name to

the ClientValidationFunction property. However, in most cases, you’ll run the validation on

the server by providing an implementation for the ServerValidate event.

Within the ServerValidate event, if the validation fails, you indicate this by setting the

IsValid property of the passed-in ServerValidateEventArgs parameter to false.

328 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

In this example, you determine if the user has selected a Format by checking the

SelectedIndex property of the FormatList control. When validating, you’re not actually

concerned with what the user has selected, just that she has selected something. So the

validation fails if the user hasn’t selected anything—if the SelectedIndex is equal to -1:

if (FormatList.SelectedIndex == -1)

{

 args.IsValid = false;

}

Although the validation check that you’re performing here is quite simple, there are no

limits to the validation that you can perform in the ServerValidate event. As long as you set the

IsValid property to false, you can make the validation as complex and complete as you require.

The Page IsValid Check

The final change to the code for the page is to change the SubmitButton_Click handler to save

the page only if the page was valid:

// only save if valid

if (Page.IsValid == true)

{

 // save player

}

Without this check, as you saw, the data will be saved to the database, even if one of the

validators—in this case, the CustomValidator—failed. When committing changes to the database,

you need to make sure that the submitted page is valid before actually saving the changes.

■Caution Always check that the page IsValid before inserting or updating data in the database. Never

rely on the fact that the client-side validators will prevent incorrect data from being transmitted. All validators

run the validation routines, even if the check is also made client side, and this extra check will make sure that

malicious users don’t deliberately send false data to your page.

Deleting Data from the Database
After completing the previous examples in this chapter, you have a number of extra Players in

the database. So, you’ll want to know how to delete data from tables in a database.

When you remove data, you still need to follow the rules laid out by the database, but this

time, you must consider how a database deals with deleting data:

• Unlike Windows, databases don’t have a Recycle Bin. Once a user says delete some data,

it’s gone; the only way to get it back is to reinsert it.

• The foreign key constraints you set on your tables may cause the database to delete

additional data from related tables or prevent you from deleting data from a table.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 329

Because of these considerations, users need to be absolutely sure that they want to delete

information before they actually do, and you want to warn them if any other data will be removed.

In fact, you could even take it out of their hands and not give them the opportunity to delete

data in the first place.

Another possibility is that you won’t actually want to delete the data, but instead pretend

to delete the data. For example, you might decide to no longer display a Player to the users, but

you need to keep the details for historical purposes. By adding an extra Boolean column to the

Player table called Deleted, you can hide data from the user. If it’s false, the row is available to

the user. If it’s true (the user has “deleted” the Player), the data is not available.

In the example here, you’re going to really delete the data so that you can see the DELETE

query in action, and also see some of the issues related to relationships that deleting data can

cause. If you were following the “pretend delete” route, you wouldn’t actually execute a DELETE

query, but would instead execute an UPDATE query. We’ll look at the UPDATE query in the “Updating

Data in the Database” section later in this chapter.

The DELETE Query

Like any other database operation, data deletion is handled by sending a SQL query to a database—

in this case, a DELETE query. The DELETE query is quite simple:

DELETE [FROM] <table name>

[WHERE <constraints>]

The DELETE query has four parts:

• The keyword DELETE denotes the action to the database.

• The optional keyword FROM makes the query more readable.

• The table name identifies the table from which the data will be deleted.

• An optional list of constraints as a WHERE clause constrains the rows to which the DELETE

query applies.

Like the INSERT query, DELETE can work on only one table at a time, which is probably a

good thing. A rogue query such as DELETE * could wipe out all the data at once, if it were a valid

query, a bit like del *.* would do in a DOS prompt. Indeed, DELETE works with whole rows only.

You never delete single columns from a row. If you needed to remove a column from a row, you

would change the column to an empty value or null, if the database allowed it.

Sympathy for the User: GridView ButtonField Columns

In the INSERT example, you used a collection of individual Web controls to let the user specify

the column values for a new Player, and then displayed the new Player in a GridView as confirma-

tion. You could carry on using simple Web controls in this exercise—perhaps binding Player

names to a DropDownList and deleting the one selected in the list when a button is clicked—but

you can easily code a more elegant solution, which you’ll look at here.

The GridView can display much more than just the results of a SELECT query. In fact, to

make it more interactive, you can add columns of buttons and links to it, allowing you to work

with a row of data in the grid, given the button that was clicked. In this special case, you’ll use

330 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

a button to indicate that a row should be deleted from the database. Depending on the purpose

of your page, the button could signify that the row should be added to a shopping cart, copied

to another location, or selected to have an e-mail message sent to it.

The object that enables you to do all this is the <asp:ButtonField> object, which you add

to the GridView’s Columns collection, like so:

<asp:GridView id="GridView1" runat="server">

 <Columns>

 <asp:ButtonField Text="Delete" ButtonType="Button"

 CommandName="DeletePlayer" />

 </Columns>

</asp:GridView>

When you DataBind() to the DataGrid, any auto-generated columns will appear as usual,

but there will now also be a column of buttons to the left displaying the value of the

ButtonField’s Text property, as shown in Figure 8-12.

Figure 8-12. The ButtonField as rendered in a GridView

The <asp:ButtonField> object has two other key properties that should be given values:

ButtonType and CommandName. ButtonType lets you specify whether the new column contains

actual buttons or hyperlink-like buttons. CommandName identifies the action associated with the

button and ties into the event handler called when the button is clicked.

By default, when a button in a ButtonField is clicked, the GridView raises an event called

RowCommand. Within this event handler, you’re free to implement whatever code you require.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 331

■Note There is one exception to the event mechanism when using a ButtonField. Setting the

CommandName to Cancel, Delete, Edit, Insert, New, Page, Select, Sort, or Update has a slightly

different effect than simply raising the RowCommand event. For instance, setting CommandName to Delete

will actually raise the RowDeleting event and, after deleting the row, the RowDeleted event. However, in

all cases, the RowCommand event also fires, so be aware if you’re using multiple button columns that you need

to check the CommandName to ensure that you’re running the correct code. If you can avoid it, don’t use a

predefined CommandName.

Try It Out: Deleting Players with DELETE

Now that you know how to select a row for deletion in a GridView, let’s build a page that demon-

strates the technique. In this example, you’ll add a ButtonField that sends the user to a new

page that confirms that the Player is to be deleted.

1. Open Players.aspx. In the Design view, set the DataKeyNames property of the GridView

to PlayerID.

2. Switch to the Source view and add a BoundField to the Columns collection of the GridView:

<Columns>

 <asp:BoundField DataField="PlayerID" HeaderText="PlayerID" />

 <asp:BoundField DataField="PlayerName" HeaderText="Name" />

 <asp:BoundField DataField="PlayerCost" DataFormatString="{0:n}"

 HeaderText="Cost" />

 <asp:ButtonField Text="Delete" ButtonType="Button"

 CommandName="DeletePlayer" />

</Columns>

3. Switch to the Design view and add a RowCommand event to the GridView. Add the following

code to the event handler:

protected void Grid1View_RowCommand(object sender,

 GridViewCommandEventArgs e)

{

 // get the PlayerID

 int intIndex = Convert.ToInt32(e.CommandArgument);

 string strPlayerID = Convert.ToString(GridView1.DataKeys[intIndex].Value);

 // perform the correct action

 if (e.CommandName == "DeletePlayer")

 {

 Response.Redirect("./Player_Delete.aspx?PlayerID=" + strPlayerID);

 }

}

332 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

4. Add a new Web Form to the Web site called Player_Delete.aspx and change the page

title to DELETE Player.

5. Add a confirmation question to the page and two buttons, called SubmitButton and

ReturnButton. You’ll also need a Label, called QueryResult, to show the results from the

query that was actually executed. You can see how the Web controls are laid out in

Figure 8-13.

Figure 8-13. You should always confirm deletions.

6. Add a Click event for the ReturnButton control and add the following code to the

event handler:

protected void ReturnButton_Click(object sender, EventArgs e)

{

 Response.Redirect("./Players.aspx");

}

7. Add the required namespace declaration to the top of the page:

<%@ Import Namespace="System.Data.SqlClient" %>

8. Add a Click event for the SubmitButton and add the following code to the event handler:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 333

 try

 {

 // query to execute

 string strQuery = "DELETE FROM WhatPlaysWhatFormat WHERE ➥

 WPWFPlayerID = @PlayerID; DELETE FROM Player ➥

 WHERE PlayerID = @PlayerID;";

 // create the command

 SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

 // add the parameter

 myCommand.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

 // open the connection

 myConnection.Open();

 // execute the query

 myCommand.ExecuteNonQuery();

 // show the result

 QueryResult.Text = "Delete of player '" +

 Request.QueryString["PlayerID"] + "' was successful";

 // disable the submit button

 SubmitButton.Enabled = false;

 }

 catch (Exception ex)

 {

 // show the error

 QueryResult.Text = "An error has occurred: " + ex.Message;

 }

 finally

 {

 // close the connection

 myConnection.Close();

 }

}

9. Save both pages, and then start the Web site. Click the Delete button for a Player, and

you’ll be presented with the confirmation page. Clicking the Delete Player button will call

the event handler to delete the Player and return a confirmation, as shown in Figure 8-14.

10. If you now click the Return to Player List button, you’ll be able to confirm that the Player

has indeed been deleted.

334 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Figure 8-14. Confirmation that the Player has been deleted

How It Works

Adding button columns to a GridView isn’t especially tricky. However, you should be aware of

a couple of potential “gotchas” when you implement the event handler.

In this example, you’re deleting only a row at a time, so the onus is on you to identify the

row that has been selected for deletion using the primary key of the table and to relay that to

the DELETE query. By using the primary key, you can ensure that only one row is deleted at a

time. So, you discover the PlayerID for the row to be deleted and work with that. You append

the PlayerID to the request for the Delete page as the PlayerID parameter:

Player_Delete.aspx?PlayerID=28

As you saw in Chapter 7, you can retrieve the ID of the row that you’re dealing with from

the DataKeys collection, as long as you’ve set the DataKeyNames property for the GridView. You

can then extract the correct row from the collection:

int intIndex = Convert.ToInt32(e.CommandArgument);

string strPlayerID = Convert.ToString(GridView1.DataKeys[intIndex].Value);

Within Player_Delete.aspx, you first give the users the option of canceling the deletion by

confirming that they wish to delete the Player. Remember that there is no Recycle Bin, so you

should always confirm deletions before actually performing the DELETE. By clicking the Delete

Player button, the SubmitButton_Click event handler is executed, and you can build the query

to delete the Player from the database.

From the brief discussion of the DELETE query, you should be able to build a DELETE query

to delete the Player relatively easily:

DELETE FROM Player WHERE PlayerID = @PlayerID

But if you look at the code, you’ll see that this isn’t the query that you execute. Now if you

just ran this DELETE query by itself, you would get an error from the database saying that you

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 335

can’t delete the Player row because there are rows in the WhatPlaysWhatFormat table that depend

on this one, and it violates the relationship you set between the two when you built the database.

The key then is to delete these dependent rows from the WhatPlaysWhatFormat table before

you delete the row from the Player table. Fortunately, all you need to do for this is use the

PlayerID again as the WPWFPlayerID column, so you can create the DELETE FROM

WhatPlaysWhatFormat query, and then tack on the DELETE FROM Player query at the end:

DELETE FROM WhatPlaysWhatFormat WHERE WPWFPlayerID = @PlayerID;

DELETE FROM Book WHERE BookID = @PlayerID

The actual code is straightforward. You create a Connection object and a Command object

containing the DELETE query. After adding the @PlayerID parameter, you call ExecuteNonQuery() on

the Command object to execute the query.

Here are a couple of things to consider about this example:

Concurrency problems: You’re executing two DELETE queries as a query batch, and if the

second query fails (for whatever reason), the first query will still succeed. This causes quite

a large concurrency problem, as you’ve deleted the supported Formats for the Player but

not the actual details of the Player itself. What you need to do is ensure that either both

queries succeed or both queries fail. You do this by using a transaction, as discussed in

Chapter 12.

Deletions even after changes: What happens if changes are made by another user to the

Player while you’re confirming that you want to delete it? The other user’s changes are

made to the Player, and then you delete it! This may be what you want to happen, but it

also may be incorrect. You may want to not allow the deletion if the data has changed. By

creating a slightly more complex DELETE query, you can prevent any deletions from occur-

ring if the Player has changed. We’ll look at concurrency issues such as this in Chapter 12.

Checks for the number of rows deleted: You don’t actually check that you’re deleting the

correct number of rows from the table. From the Web site’s design, you know that if you

delete a Player, you should affect only one row in the Player table. You could also check that

this is true by looking at the number of rows affected returned from ExecuteNonQuery().

However, when executing a query batch, as you do here, the rows affected are the sum

of all of the queries that are executed, so you couldn’t use this value at the moment. You

could split the two DELETE queries into separate calls to the database and ensure that the

DELETE query against the Player table deleted only one row. If it didn’t, you would have an

error (and if you were using a transaction, you could then abort the transaction and prevent

the deletion from occurring).

Deleting data is a relatively simple thing to do, but it’s also the most final. It’s worth repeating

that you need to be careful when implementing deletions.

■Note The code in the download for MySQL 5.0 and Microsoft Access both implement the DELETE functionality.

However, as with the INSERT example, these databases can’t handle multiple queries in the same query

batch and don’t support named parameters.

336 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Updating Data in the Database
Suppose you want to allow users to edit data already in the database. You’ve designed the data-

base to reduce the number of data-entry errors you may make, but that won’t stop users from

making mistakes, so you’ll need to provide some way to correct them. Even if there aren’t errors

in your data, you still may need to update data. For example, an inventory system needs to keep

updating the number of items in stock at any one time or the number of items sold; personal-

ization systems need to update data when users update their preferences; and so on.

The process of editing data is much like adding it, except that you’re starting the process

with values that already exist. You still need to work with the rules of the database—the keys,

the constraints, and so on. And you must try to use the best Web control for each column to

allow users to edit the data. You may prefer to use a list Web control for foreign key values or a

check box for Boolean values, rather than a text box.

The UPDATE Query

As usual, the whole operation of editing data comes down to generating and running a SQL

query. In this case, it’s an UPDATE query, which has the following syntax:

UPDATE < table name >

SET column1 name = expression1,

 column2 name = expression2,

 .

 .

 .

 columnM name = expressionM

[WHERE <constraints>]

The UPDATE query has the following five basic components:

• The keyword UPDATE denotes the action to the database.

• The table name determines the table from which the data will be updated.

• The keyword SET denotes the start of the updated information.

• A comma-separated list of assignments sets individual columns to given values.

• The WHERE clause constrains the number of rows that the UPDATE query affects.

UPDATE isn’t limited to working with one table at a time, but it’s probably easier to use it

that way to start. Also, you may want to validate potential new values for the database before

you update it, in the same fashion as when adding new rows.

Try It Out: Updating a Player with UPDATE

In this example, you’ll add the final page to our solution so that Player details can be modified.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 337

1. Open Players.aspx and add another <asp:ButtonField> to the GridView:

<asp:ButtonField Text="Edit" ButtonType="Button"

 CommandName="EditPlayer" />

2. Modify the RowCommand event of the GridView and add the following code:

protected void Grid1View_RowCommand(object sender,

 GridViewCommandEventArgs e)

{

 // get the PlayerID

 int intIndex = Convert.ToInt32(e.CommandArgument);

 string strPlayerID = Convert.ToString(

 GridView1.DataKeys[intIndex].Value);

 // perform the correct action

 if (e.CommandName == "DeletePlayer")

 {

 Response.Redirect("./Player_Delete.aspx?PlayerID=" + strPlayerID);

 }

 else if (e.CommandName == "EditPlayer")

 {

 Response.Redirect("./Player_Update.aspx?PlayerID=" + strPlayerID);

 }

}

3. In the Solution Explorer, copy Player_Insert.aspx and rename the copy

Player_Update.aspx.

4. Change the page title to UPDATE Player, and change the Text property of the SubmitButton

to Update Player.

5. Switch to the Source view and modify the Page_Load event as follows:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // populate the list of manufacturers

 PopulateManufacturers();

 // populate the list of formats

 PopulateFormats();

 // retrieve existing player

 RetrieveExistingPlayer();

 }

}

338 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

6. Add the code for the RetrieveExistingPlayer()method:

private void RetrieveExistingPlayer()

{

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

 try

 {

 // create the first SELECT command

 string strQuery1 = "SELECT PlayerName, PlayerManufacturerID, ➥

 PlayerCost, PlayerStorage FROM Player WHERE PlayerID=@PlayerID;";

 SqlCommand myCommand1 = new SqlCommand(strQuery1, myConnection);

 myCommand1.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

 // create the first SELECT command

 string strQuery2 = "SELECT WPWFFormatID FROM WhatPlaysWhatFormat ➥

 WHERE WPWFPlayerID = @PlayerID;";

 SqlCommand myCommand2 = new SqlCommand(strQuery2, myConnection);

 myCommand2.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

 // open the connection

 myConnection.Open();

 // execute the first query

 SqlDataReader myReader1 = myCommand1.ExecuteReader();

 // if we have results, then we need to parse them

 if (myReader1.Read() == true)

 {

 PlayerName.Text = myReader1.GetString(

 myReader1.GetOrdinal("PlayerName"));

 ManufacturerList.SelectedValue = myReader1.GetInt32(

 myReader1.GetOrdinal("PlayerManufacturerID")).ToString();

 PlayerCost.Text = myReader1.GetDecimal(

 myReader1.GetOrdinal("PlayerCost")).ToString();

 PlayerStorage.Text = myReader1.GetString(

 myReader1.GetOrdinal("PlayerStorage"));

 }

 // close the first data reader

 myReader1.Close();

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 339

 // execute the second query

 SqlDataReader myReader2 = myCommand2.ExecuteReader();

 // if we have results, then we need to parse them

 while(myReader2.Read() == true)

 {

 foreach(ListItem objFormat in FormatList.Items)

 {

 if (objFormat.Value == myReader2.GetInt32(

 myReader2.GetOrdinal("WPWFFormatID")).ToString())

 {

 objFormat.Selected = true;

 break;

 }

 }

 }

 // close the second data reader

 myReader2.Close();

 }

 finally

 {

 // close the connection

 myConnection.Close();

 }

}

7. Change the code within the SubmitButton_Click event handler to the following:

protected void SubmitButton_Click(object sender, EventArgs e)

{

 // only save if valid

 if (Page.IsValid == true)

 {

 // save the player to the database

 bool blnPlayerError = SavePlayer();

 // did an error occur?

 if (blnPlayerError == true)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

 // save the formats for the player

 bool blnFormatError = SaveFormats();

340 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 // did an error occur?

 if (blnFormatError == true)

 {

 QueryResult.Text = "An error has occurred!";

 }

 else

 {

 // show the result

 QueryResult.Text = "Update of player '" +

 Request.QueryString["PlayerID"] + "' was successful";

 // disable the submit button

 SubmitButton.Enabled = false;

 }

 }

 }

}

8. Modify the SavePlayer() method as follows:

private bool SavePlayer()

{

 bool blnError = false;

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

 try

 {

 // query to execute

 string strQuery = "UPDATE Player SET PlayerName = @Name, ➥

 PlayerManufacturerID = @ManufacturerID, PlayerCost = @Cost, ➥

 PlayerStorage = @Storage WHERE PlayerID = @PlayerID;";

 // create the command

 SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

 // add the parameters

 myCommand.Parameters.AddWithValue("@Name", PlayerName.Text);

 myCommand.Parameters.AddWithValue("@ManufacturerID",

 ManufacturerList.SelectedValue);

 myCommand.Parameters.AddWithValue("@Cost", PlayerCost.Text);

 myCommand.Parameters.AddWithValue("@Storage", PlayerStorage.Text);

 myCommand.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 341

 // open the connection

 myConnection.Open();

 // execute the query

 myCommand.ExecuteNonQuery();

 }

 catch

 {

 // indicate that we have an error

 blnError = true;

 }

 finally

 {

 // close the connection

 myConnection.Close();

 }

 // return the error flag

 return (blnError);

}

9. Modify the SaveFormats() method as follows:

private bool SaveFormats()

{

 bool blnError = false;

 // create the connection

 string strConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(strConnectionString);

 try

 {

 // create the DELETE query

 string strQuery1 = "DELETE FROM WhatPlaysWhatFormat WHERE ➥

 WPWFPlayerID = @PlayerID;";

 SqlCommand myCommand1 = new SqlCommand(strQuery1, myConnection);

 myCommand1.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

 // create the INSERT query

 string strQuery2 = "INSERT WhatPlaysWhatFormat ➥

 (WPWFPlayerID, WPWFFormatID) VALUES (@PlayerID, @FormatID)";

 SqlCommand myCommand2 = new SqlCommand(strQuery2, myConnection);

 myCommand2.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

 myCommand2.Parameters.Add("@FormatID", System.Data.SqlDbType.Int);

342 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 // open the connection

 myConnection.Open();

 // execute the DELETE query

 myCommand1.ExecuteNonQuery();

 // loop through each of the formats

 foreach (ListItem objFormat in FormatList.Items)

 {

 // save if selected

 if (objFormat.Selected == true)

 {

 // set the parameter value

 myCommand2.Parameters["@FormatID"].Value = objFormat.Value;

 // execute the INSERT query

 myCommand2.ExecuteNonQuery();

 }

 }

 }

 catch

 {

 // indicate that we have an error

 blnError = true;

 }

 finally

 {

 // close the connection

 myConnection.Close();

 }

 // return the error flag

 return (blnError);

}

10. Save the two pages, and then start the Web site. If you edit a Player, you’ll see that the

modified details are saved to the database. Also notice that the validation routines

prevent incorrect data from being entered.

How It Works

This example has more code than you’ve seen in the previous examples, but it just builds on

those examples.

When editing data in the database, two tasks are paramount:

• Show the data that is already in the database so that the user can make the necessary

changes.

• Save the data to the database, making sure that the modified data is saved and any old

results are removed.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 343

Due to the way that the Insert page is designed, you can add the ability to modify an existing

Player by adding a new method, RetrieveExistingPlayer(), to populate the Web controls

on the page with the existing details for the Player. Then you modify the SavePlayer() and

SaveFormats() methods to handle updating the existing data, rather than adding new data.

We’ll look at each of these methods in turn.

■Note In most cases, you’ll have only one page that is used for both adding and updating data. You’ll see

this when we look at the DataSet examples later in this chapter. However, you should be able to combine

the Player_Insert.aspx, Player_Update.aspx, and Player_Delete.aspx pages together to have

one page in the same way, as you will for the DataSet examples.

Retrieving the Existing Player

The RetrieveExistingPlayer()method is responsible for retrieving the existing details for the

Player from the database and showing these details on the page. In order to retrieve the Player

from the database, you need to execute two queries, because the required data is stored in two

different tables. The first query returns all of the information from the Player table:

SELECT PlayerName, PlayerManufacturerID, PlayerCost, PlayerStorage

FROM Player

WHERE PlayerID = @PlayerID

The @PlayerID parameter is set to the value retrieved from the query string using the

AddWithValue() method of the Parameters collection:

myCommand1.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

To populate the Web controls on the page, you return the results of the query as a DataReader

and attempt to fill the Web controls only if you’ve returned results. You can check this by using

the Read() method, which returns true if there is a row of data:

if (myReader1.Read() == true)

{

 PlayerName.Text = myReader1.GetString(

 myReader1.GetOrdinal("PlayerName"));

 ManufacturerList.SelectedValue = myReader1.GetInt32(

 myReader1.GetOrdinal("PlayerManufacturerID")).ToString();

 PlayerCost.Text = myReader1.GetDecimal(

 myReader1.GetOrdinal("PlayerCost")).ToString();

 PlayerStorage.Text = myReader1.GetString(

 myReader1.GetOrdinal("PlayerStorage"));

}

You use the GetXXX methods of the DataReader to return the required column in the correct

format. For PlayerName, PlayerCost, and PlayerStorage, you use text boxes to enter the data, so

you can set the Text property of the TextBox to the string version of the column.

344 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

The PlayerManufacturerID column is a little trickier. You’re showing the list of Manufacturers

in a DropDownList, so you need to set the SelectedValue property. The only caveat for setting

this property is that you need to have populated the Web control before you can set the

SelectedValue (you’ll get a runtime error if you don’t, as the value that you’re trying to select

won’t be one of the values that the Web control is displaying). If you take a look at the Page_Load

event handler, you’ll see that PopulateManufacturers() is called before you retrieve the Player

from the database.

The Page_Load event also calls PopulateFormats() to populate the CheckBoxList with all

of the available Formats before you retrieve the Player. That should give you a big hint as to the

second query that you need to execute.

The second query retrieves the supported Formats for the Player from the database.

All you require is the list of FormatID values for the required Player:

SELECT WPWFFormatID

FROM WhatPlaysWhatFormat

WHERE WPWFPlayerID = @PlayerID

Again, the @PlayerID parameter is set directly from the query string value and you retrieve

the results as a DataReader. However you’re returning multiple results into a list Web control

that supports the selection of multiple items, so you can’t simply set the SelectedValue for the

Web control as you did for the ManufacturerList control. You need to step through each of the

returned values and set the individual items within the CheckBoxList. You step through all of

the returned results in the DataReader using the Read() method in conjunction with a while loop:

while(myReader2.Read() == true)

{

Then you loop through all of the ListItem entries in the CheckBoxList and set the Selected

property of the ListItem to true if the Value of the ListItem is the FormatID from the DataReader:

 foreach(ListItem objFormat in FormatList.Items)

 {

 if (objFormat.Value == myReader2.GetInt32(

 myReader2.GetOrdinal("WPWFFormatID")).ToString())

 {

 objFormat.Selected = true;

 break;

 }

 }

}

If you select the ListItem, you’ll see that you use break to exit from the foreach loop imme-

diately. You’re looping through every entry in the CheckBoxList for each Format that you retrieve

from the database, and using break allows you to stop executing when you’re never going to

select another ListItem.

This is quite a convoluted way of setting the entries in the CheckBoxList. Because you’re

allowing the reader to select multiple values from the list, you must manually select the individual

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 345

items. You don’t have the luxury of using the SelectedValue property, as you do for the

ManufacturerList control.

Saving the Updated Player

In order to save the modified Player details to the database, you need to execute an UPDATE

query to modify the existing Player in the database:

UPDATE Player

SET PlayerName = @Name, PlayerManufacturerID = @ManufacturerID,

 PlayerCost = @Cost, PlayerStorage = @Storage

WHERE PlayerID = @PlayerID

You’re updating the Player table, and by adding the WHERE clause, you’re constraining the

UPDATE query to work only against the PlayerID that you require (which again takes its value

from the query string).

The SET part of the query specifies the actual updating. You’re updating the PlayerName,

PlayerManufacturerID, PlayerCost, and PlayerStorage columns with the values from the @Name,

@ManufacturerID, @Cost, and @Storage parameters.

You already know how to add parameters to the query, and you’re simply specifying the

reverse of the Web control population in the RetrieveExistingPlayer() method. You add the

four parameters that take their values from the Web controls on the page:

myCommand.Parameters.AddWithValue("@Name", PlayerName.Text);

myCommand.Parameters.AddWithValue("@ManufacturerID",

 ManufacturerList.SelectedValue);

myCommand.Parameters.AddWithValue("@Cost", PlayerCost.Text);

myCommand.Parameters.AddWithValue("@Storage", PlayerStorage.Text);

And you also add the @PlayerID parameter from the query string value:

myCommand.Parameters.AddWithValue("@PlayerID",

 Request.QueryString["PlayerID"]);

Once you’ve added the five parameters to the query, you open the connection to the data-

base and execute the query using the ExecuteNonQuery() method. If an error occurs, you trap it

and set the error flag, causing any further processing of the update to be halted.

One thing you’re not doing is checking that the UPDATE query has worked. You could use

the return value from this method to determine the number of rows that were updated, and check

that to determine if the update was a success—if you haven’t updated a single row, then something

has gone wrong. And if, in this instance, you’ve updated more than one row, then something has

gone more wrong.

You’re also not taking into account any changes that may be made by another user. What

happens if changes are made by another user to the Player while you’re making your changes?

Whoever updates the Player first will lose those changes, and only the latest changes will be

stored in the database. This may be what you want to happen, but it also may be incorrect. You

may not want to allow the second update if the data has changed. By creating a slightly more

complex UPDATE query, you can prevent any changes from occurring if the Player has changed.

We’ll look at this in Chapter 12.

346 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Saving the Modified Formats

In order to save the supported Formats for the Player, you can’t simply save the details of the

selected Formats directly to the database. You need to insert multiple rows of information into

the WhatPlaysWhatFormat table, and you can’t do this using an UPDATE query. You saw how to

add the Format details to the database using an INSERT query earlier, when you added a new

Player. You use the same INSERT query to save the Formats to the database, but here, you can’t

simply add new information to the database; if you did, you might encounter the following

problems:

• You add a Format that is already in the database, and you get a primary key error, as

you’re trying to add the same primary key (the combination of PlayerID and FormatID)

into the WhatPlaysWhatFormat table.

• You manage to add the new information into the database (if you don’t have a Format

selected that was retrieved from the database initially), but now have incorrect data, as

the Player will appear to support the original list of Formats as well as the new list of

Formats that you saved.

To avoid these problems, you must remove the existing information from the database

before you can add the new information. You execute a DELETE query to remove the existing

Format details for the Player:

DELETE FROM WhatPlaysWhatFormat WHERE WPWFPlayerID = @PlayerID

Once the existing Format information has been saved to the database, you can then add

the new information into the database. If you compare the SaveFormat() method in this page

with the method you saw earlier in Player_Insert.aspx, you’ll see that the method for adding

the new information to the database is indeed the same.

Using a DataSet to Make the Changes
We’ve spent quite a considerable amount of time looking at how to insert, update, and delete

data from the database by calling ExecuteNonQuery() and ExecuteScalar() on the Command

object to propagate the changes to the database. Now we’ll explore how to use a DataSet to

make changes to the database. In the next chapter, you’ll learn yet another way to edit data in

a database: using the SqlDataSource with the GridView, DetailsView, and FormView.

As you learned in Chapter 5, the DataSet is disconnected from the database and allows you

to make changes to the database and then propagate those changes back to the database in

one go.

The key to making everything work is the DataAdapter (or to be provider-specific, the

SqlDataAdapter, OdbcDataAdapter, and OleDbDataAdapter) being used in conjunction with

INSERT, UPDATE, and DELETE queries. When using the DataAdapter to retrieve data, you set the

SelectCommand to a Command object containing a SELECT query. You can do the same for

INSERT, UPDATE, and DELETE queries by setting the InsertCommand, UpdateCommand, and DeleteCommand

to the Command objects that you want to execute. You also have the option of letting a

CommandBuilder (the SqlCommandBuilder, OdbcCommandBuilder, or OleDbCommandBuilder)

automatically generate the INSERT, UPDATE, and DELETE queries based on the SELECT query

that you use to populate the DataTable.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 347

But how do you actually perform the changes? As you know, the DataAdapter has a Fill()

method that populates a DataTable with the results of the SelectCommand. It also has a corre-

sponding Update() method that propagates any changes made (either to the specified

DataTable or to the DataSet as a whole) back to the database.

We’ll start by looking at how the DataAdapter knows what changes need to be propagated

to the database, and then see how the DataRow stores the changes that are made to its columns.

Once we’ve finished this, admittedly brief, tour of the DataAdapter and DataRow, you’ll build an

example that allows you to insert, update, and delete Manufacturers.

■Note This section provides only an introduction to what is possible using a DataSet to modify the data-

base. For more information, see Professional ADO.NET 2.0 by Sahil Malik (1-59059-512-2; Apress, 2005).

The Role of the DataAdapter

To make changes to the database, the DataAdapter needs to know what has actually changed

so that it knows which of the SQL queries it needs to execute. It does this by looking at the

RowState for each DataRow in the DataTable.

The RowState is set to a value from the System.Data.DataRowState enumeration. Table 8-3

shows the possible values for the DataRowState enumeration, as well as the Command object

that will be used during the call to Update().

On calling the Update() method, each DataRow is interrogated for its RowState, and the

necessary Command object used to propagate the changes to the database. After the changes

have been propagated to the database, the RowState is set to Unchanged for added and modified

rows, and any deleted rows are actually removed from the DataTable.

Table 8-3. The DataRowState Enumeration Values

Name Description Command

Added The DataRow has been added to the DataTable. InsertCommand

Deleted The DataRow has been deleted by calling the Delete()
method of the DataRow.

DeleteCommand

Detached A DataRow is detached when it is first created and before
it is added to a DataTable (at which point, its state changes
to Added).

N/A

Modified The DataRow has been modified. UpdateCommand

Unchanged The DataRow hasn’t been modified. None

348 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

■Note It is possible to turn off the modifications to the DataTable during an Update() by setting the

AcceptChangesDuringUpdate property to false (it has a default of true). If you do this, the changes

will have been made to the database, but the DataTable will still show that it has rows that have been

changed. In order to accept the changes, you would need to call the AcceptChanges() method to complete

the update of the DataTable. You can also call AcceptChanges() on an individual DataRow to commit any

changes to that row, without affecting any other rows in the table.

The Role of the DataRow

As you’ve just learned, the DataRow knows that it has changed, and its RowState property tells

you what change has been made. The DataRow also keeps a track of the value that it originally

contained, as well as the value that it currently contains.

You can retrieve the value of a column from a DataRow by specifying either the column’s

index or its name. For example, to retrieve the ManufacturerName from a DataRow, you would

use the following:

ManufacturerName.Text = drManufacturer["ManufacturerName"].ToString();

It is also possible to retrieve the value that the column originally contained:

ManufacturerName.Text =

 drManufacturer["ManufacturerName",DataRowVersion.Original].ToString();

Along with these two versions of the data, you can also retrieve two other versions.

Table 8-4 shows the four versions you can retrieve.

Try It Out: Inserting Data Using a DataSet

In this example, you’ll add a page that allows you to add Manufacturers in the database. You’ll

first create a page to view the Manufacturers that are in the database.

Table 8-4. The DataRowVersion Enumeration Values

Name Description

Current The default, which returns the value that will be propagated to the database or
returned when you don’t specify a DataRowVersion. When the DataRow is created the
Current and Original values are the same. When the column is modified the Current
value will change.

Default Returns either the Current version (if the RowState is Added, Modified, or Deleted) or
the Proposed version (if the RowState is Detached).

Original Returns the value that was retrieved from the database. You can use the Original
version to check that the row you’re updating or deleting hasn’t changed before
setting its value to the Current version (see Chapter 12).

Proposed Returns the value that is proposed for the column.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 349

1. Add a new Web Form to the Web site called Manufacturers.aspx. Make sure that the

Place Code in Separate File check box is unchecked.

2. In the Source view, find the <title> tag within the HTML at the bottom of the page and

change the page title to Manufacturers.

3. Switch to the Design view and add a SqlDataSource to the page. Choose to configure

the data source and use SqlConnectionString to connect to the database. Select the

ManufacturerID, ManufacturerName, and ManufacturerCountry columns from

the Manufacturer table to configure the SELECT query.

4. Switch back to the Source view and add the following markup after the declaration of

the SqlDataSource:

<asp:HyperLink ID="HyperLink1" runat="server"

 NavigateUrl="./Manufacturer_Edit.aspx">Add manufacturer</asp:HyperLink>

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"

 DataSourceID="SqlDataSource1">

 <Columns>

 <asp:BoundField DataField="ManufacturerID"

 HeaderText="ManufacturerID" />

 <asp:BoundField DataField="ManufacturerName"

 HeaderText="ManufacturerName" />

 <asp:BoundField DataField="ManufacturerCountry"

 HeaderText="ManufacturerCountry" />

 </Columns>

</asp:GridView>

5. Add a new Web Form to the Web site called Manufacturer_Edit.aspx. Make sure that the

Place Code in Separate File check box is unchecked.

6. In the Source view, find the <title> tag within the HTML at the bottom of the page and

change the page title to Edit Manufacturer. Then add the required Import statements to

the top of the page:

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqlClient" %>

7. Add the Web controls to allow the addition of a Manufacturer to the database. Add a

Button to save the Manufacturer; a Button to return to the list of Manufacturers; and

four TextBox controls for the user to add the Manufacturer’s name, country, e-mail

address, and Web site address. Name these SaveButton, ReturnButton, ManufacturerName,

ManufacturerCountry, ManufacturerEmail, and ManufacturerWebsite, respectively. Also

add a Label, called QueryResult, to show the results from the query that was executed.

You can see how the Web controls are laid out in Figure 8-15.

350 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Figure 8-15. The Web control layout for Manufacturer_Edit.aspx

8. Switch to the Source view and add the following variable declarations to the top of the

<script> block:

SqlDataAdapter myAdapter;

DataSet myDataSet;

9. Add the private method to retrieve the Manufacturers from the database:

private void RetrieveManufacturers()

{

 // set the SQL query we need to get the manufacturers

 string strQuery = "SELECT ManufacturerID, ManufacturerName, ➥

 ManufacturerCountry, ManufacturerEmail, ManufacturerWebsite ➥

 FROM Manufacturer";

 // create the Connection to the database

 string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

 SqlConnection myConnection = new SqlConnection(ConnectionString);

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 351

 // create the DataAdapter

 myAdapter = new SqlDataAdapter(strQuery, myConnection);

 // set up the INSERT/UPDATE/DELETE queries

 SqlCommandBuilder myCommandBuilder = new SqlCommandBuilder(myAdapter);

 // create a new DataSet

 myDataSet = new DataSet();

 // fill the DataSet

 myAdapter.Fill(myDataSet, "Manufacturer");

 // now add the primary key details

 DataColumn[] myPrimaryKey = {

 myDataSet.Tables["Manufacturer"].Columns["ManufacturerID"] };

 myDataSet.Tables["Manufacturer"].PrimaryKey = myPrimaryKey;

}

10. Switch to the Design view and double-click the Save Player button to add the Click

event handler. Add the following code:

protected void SaveButton_Click(object sender, EventArgs e)

{

 // only save if valid

 if (Page.IsValid == true)

 {

 // get the Manufacturers

 RetrieveManufacturers();

 // create a new DataRow

 DataRow drManufacturer = myDataSet.Tables["Manufacturer"].NewRow();

 // now set the column values

 drManufacturer["ManufacturerName"] = ManufacturerName.Text;

 drManufacturer["ManufacturerCountry"] = ManufacturerCountry.Text;

 drManufacturer["ManufacturerEmail"] = ManufacturerEmail.Text;

 drManufacturer["ManufacturerWebsite"] = ManufacturerWebsite.Text;

352 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 // add a temporary primary key value

 drManufacturer["ManufacturerID"] = "-1";

 // add the DataRow to the table

 myDataSet.Tables["Manufacturer"].Rows.Add(drManufacturer);

 try

 {

 // now update the database

 myAdapter.Update(myDataSet, "Manufacturer");

 // show the result

 QueryResult.Text = "Save of manufacturer was successful";

 // disable all the controls we don't want to allow changes to

 SaveButton.Enabled = false;

 ManufacturerName.Enabled = false;

 ManufacturerCountry.Enabled = false;

 ManufacturerEmail.Enabled = false;

 ManufacturerWebsite.Enabled = false;

 }

 catch (Exception ex)

 {

 // show the error

 QueryResult.Text = "An error has occurred: " + ex.Message;

 }

 }

}

11. Switch back to the Design view and add the Click event handler for the Return to

Manufacturer List button. Add the following code:

protected void ReturnButton_Click(object sender, EventArgs e)

{

 Response.Redirect("./Manufacturers.aspx");

}

12. Save both pages, and then open Manufacturers.aspx in your browser. Click the

Add Manufacturer link, and then enter the details for a new Manufacturer on the

Manufacturer_Edit.aspx page.

13. Click the Save Manufacturer button to the database, and you’ll see that the Manufacturer

has been saved, as shown in Figure 8-16.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 353

Figure 8-16. Adding a new Manufacturer to the database

How It Works

As you can see, using a DataSet to add to the database requires substantially less code than the

equivalent page for the earlier Player example.

The addition of a new Manufacturer to the database requires three basic steps:

• Retrieve the existing Manufacturers from the database into a DataTable within the DataSet.

• Add a new DataRow to the DataTable and populate it correctly with the information

entered by the user.

• Save the changes made by to the DataTable to the database using the DataAdapter.

We’ll look at each of these steps in turn.

Retrieving the Manufacturers

Before you can add a new Manufacturer to the DataTable, you need to know the structure of the

DataTable. As you saw in Chapter 5, you can build the DataTable from scratch, populate it, and

send the changes back to the database. However, you didn’t do that here. Instead, you retrieve

the existing Manufacturer table from the database to ensure that you have the correct format.

You retrieve the list of Manufacturers using the RetrieveManufacturers() method, which

you call before you attempt to add a new row to the DataTable. It may seem a little strange that

you’re doing this in its own method and storing the DataSet and DataAdapter as global variables

354 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

for the page. You use this approach because it allows you to use the same code to retrieve the

list of Manufacturers for updating and deleting data as well.

The first thing that you do within the RetrieveManufacturers() method is to create the

SQL for the SELECT query and create the Connection object.

// set the SQL query we need to get the manufacturers

string strQuery = "SELECT ManufacturerID, ManufacturerName, ➥

 ManufacturerCountry, ManufacturerEmail, ManufacturerWebsite ➥

 FROM Manufacturer";

// create the Connection to the database

string ConnectionString = ConfigurationManager.

 ConnectionStrings["SqlConnectionString"].ConnectionString;

myConnection = new SqlConnection(ConnectionString);

You then create the DataAdapter that you’re going to use to propagate any changes back

to the database, passing in the SELECT query and the Connection that you want to use:

// create the DataAdapter

myAdapter = new SqlDataAdapter(strQuery, myConnection);

Once you have a DataAdapter object, you can then use a CommandBuilder to automati-

cally create the INSERT, UPDATE, and DELETE queries. All you need to do is create a new instance

of the CommandBuilder, passing the DataAdapter to the constructor. You don’t even need to

keep a reference to the CommandBuilder after it has been created:

// set up the INSERT/UPDATE/DELETE queries

SqlCommandBuilder myCommandBuilder = new SqlCommandBuilder(myAdapter);

You then create a new DataSet and use the Fill() method of the DataAdapter to fill the

correct table:

// create a new DataSet

myDataSet = new DataSet();

// fill the DataSet

myAdapter.Fill(myDataSet, "Manufacturer");

Next, you need to add the primary key details for the DataTable. You create a new array of

DataColumn objects and add the required columns—in this case, ManufacturerID—to the array.

You can then set the PrimaryKey property on the DataTable:

// now add the primary key details

DataColumn[] myPrimaryKey = {

 myDataSet.Tables["Manufacturer"].Columns["ManufacturerID"] };

myDataSet.Tables["Manufacturer"].PrimaryKey = myPrimaryKey;

You don’t manually open or close the connection to the database within the

RetrieveManufacturers() method. Instead, you let the DataAdapter open and close the

connection as it requires. It will do this when it needs to Fill() or Update() the DataSet, and

will open the connection only when it is required.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 355

Adding a New Row to the Table

We’ve already looked at how to add a new row to a DataTable in Chapter 5. The code that you

execute here is the same apart, from one little caveat.

You first call the NewRow() method on the Manufacturer DataTable to return a new DataRow

object (which has its RowState set to Detached):

// create a new DataRow

DataRow drManufacturer = myDataSet.Tables["Manufacturer"].NewRow();

You can then set the values of the four columns directly from the TextBox controls from

the page:

// now set the column values

drManufacturer["ManufacturerName"] = ManufacturerName.Text;

drManufacturer["ManufacturerCountry"] = ManufacturerCountry.Text;

drManufacturer["ManufacturerEmail"] = ManufacturerEmail.Text;

drManufacturer["ManufacturerWebsite"] = ManufacturerWebsite.Text;

Then you need to add a ManufacturerID to the DataRow, even though it’s a primary key and

an auto-generated column in the database. By setting the primary key on the DataTable, you’re

no longer allowed to have a null value for the ManufacturerID column, so you choose a value

that cannot appear in the database:

// add a temporary primary key value

drManufacturer["ManufacturerID"] = "-1";

By using the value of -1, you don’t risk picking a value that is (or could be) a ManufacturerID

value in the database. This value is never sent to the database and is ignored, as the INSERT

query that is generated doesn’t pass it to the database.

You can then add the DataRow to the DataTable, changing its RowState to Added in the process:

// add the DataRow to the table

myDataSet.Tables["Manufacturer"].Rows.Add(drManufacturer);

Now that you’ve added the DataRow to the DataTable, you can propagate the changes to

the database.

Saving the Changes to the Database

You propagate the changes to the database by calling the Update() method of the DataAdapter

specifying the DataSet and the name of the DataTable you want to update. Then you inform the

user that the save was successful:

// now update the database

myAdapter.Update(myDataSet, "Manufacturer");

// show the result

QueryResult.Text = "Save of manufacturer was successful";

Although the code looks simple, quite a lot of work is going on under the covers. The

DataAdapter loops through all of the DataRows in the DataTable and checks the RowStatus. If the

356 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

status is Added, Modified, or Deleted, the changes are propagated back to the database using the

InsertCommand, UpdateCommand, or DeleteCommand, respectively.

As you’ve made only one change the DataTable, you have only one change to propagate to

the database. As it’s a DataRow addition, the InsertCommand will be used.

The CommandBuilder created the InsertCommand automatically, and as you saw in the

example, it works. It’s not all magic though, and it is possible to view the query that is being

executed by tapping into the events that the DataAdapter raises.

As in common with most of the other data-access Web controls and classes in ASP.NET,

the DataAdapter has before and after events concerned with updating the database:

• RowUpdating: This event occurs before the update takes place. The event arguments

allow you to inspect the query that is being executed.

• RowUpdated: Once the update has taken place, the RowUpdated event allows you to see the

query that has been executed, as well see the number of RecordsAffected by the update.

These two events are common to each type of update (INSERT, UPDATE, or DELETE).

If you wanted to, you could add the event handler. Visual Web Developer makes it very

easy to do this, and it will auto-complete most of the code to add the event handler (and will

even add the signature for the event handler itself if you press Tab when asked). You can add

the following to add the event handler:

myAdapter.RowUpdating += new

 SqlRowUpdatingEventHandler(myAdapter_RowUpdating);

And then do whatever you want within the event handler itself.

If you look at the query that is executed (e.Command.CommandText), you’ll see that it is a quite

simple INSERT query:

INSERT INTO Manufacturer (ManufacturerName, ManufacturerCountry,

 ManufacturerEmail, ManufacturerWebsite)

VALUES (@p1, @p2, @p3, @p4)

The CommandBuilder has created an INSERT query simply from the definition of the SELECT

query. The CommandBuilder has parameterized it as well, and if you look at the Parameters

collection, you’ll see that it picks up the values from the DataTable automatically using the

SourceColumn and SourceVersion properties of the SqlParameter. You’ll learn more about these

properties a little later in this chapter, in the “Manually Creating the Commands” section.

Try It Out: Updating Data Using a DataSet

You’ll now modify the example so that it also allows you to update an existing Manufacturer. In

the earlier Player examples, a lot of the code was repeated in the INSERT and UPDATE examples.

By combining the two pages, you can remove a lot of repeated code.

1. Open Manufacturers.aspx. In the Design view, set the DataKeyNames property of the

GridView to ManufacturerID.

2. Switch to the Source view and add a ButtonField to the Columns collection of the

GridView:

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 357

<Columns>

 <asp:BoundField DataField="ManufacturerID"

 HeaderText="ManufacturerID" />

 <asp:BoundField DataField="ManufacturerName"

 HeaderText="ManufacturerName" />

 <asp:BoundField DataField="ManufacturerCountry"

 HeaderText="ManufacturerCountry" />

 <asp:ButtonField Text="Edit" ButtonType="Button"

 CommandName="EditManufacturer" />

</Columns>

3. Add a RowCommand event to the GridView. Add the following code to the event handler:

protected void Grid1View_RowCommand(object sender,

 GridViewCommandEventArgs e)

{

 // get the ManufacturerID

 int intIndex = Convert.ToInt32(e.CommandArgument);

 string strManufacturerID = Convert.ToString(

 GridView1.DataKeys[intIndex].Value);

 // perform the correct action

 if (e.CommandName == "EditManufacturer")

 {

 Response.Redirect("./Manufacturer_Edit.aspx?ManufacturerID=" +

 strManufacturerID);

 }

}

4. Open Manufacturers_Edit.aspx and add a Load event to the page. Add the following

code to the event handler:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // only load if we have a manufacturer

 if (Request.QueryString["ManufacturerID"] != null)

 {

 // load all the manufacturers

 RetrieveManufacturers();

 // find the one we're after

 DataRow drManufacturer = myDataSet.Tables["Manufacturer"].

 Rows.Find(Request.QueryString["ManufacturerID"]);

358 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 // set the four controls

 ManufacturerName.Text =

 drManufacturer["ManufacturerName"].ToString();

 ManufacturerCountry.Text =

 drManufacturer["ManufacturerCountry"].ToString();

 ManufacturerEmail.Text =

 drManufacturer["ManufacturerEmail"].ToString();

 ManufacturerWebsite.Text =

 drManufacturer["ManufacturerWebsite"].ToString();

 }

 }

}

5. Modify the SaveButton_Click event handler as follows:

protected void SaveButton_Click(object sender, EventArgs e)

{

 // only save if valid

 if (Page.IsValid == true)

 {

 // get the Manufacturers

 RetrieveManufacturers();

 // create new or use existing?

 DataRow drManufacturer = null;

 if (Request.QueryString["ManufacturerID"] == null)

 {

 // create a new DataRow

 drManufacturer = myDataSet.Tables["Manufacturer"].NewRow();

 }

 else

 {

 // find the one we're after

 drManufacturer = myDataSet.Tables["Manufacturer"].Rows.

 Find(Request.QueryString["ManufacturerID"]);

 }

 // now set the column values

 drManufacturer["ManufacturerName"] = ManufacturerName.Text;

 drManufacturer["ManufacturerCountry"] = ManufacturerCountry.Text;

 drManufacturer["ManufacturerEmail"] = ManufacturerEmail.Text;

 drManufacturer["ManufacturerWebsite"] = ManufacturerWebsite.Text;

 // if new, must add to table

 if (Request.QueryString["ManufacturerID"] == null)

 {

 // add a temporary primary key value

 drManufacturer["ManufacturerID"] = "-1";

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 359

 // add the DataRow to the table

 myDataSet.Tables["Manufacturer"].Rows.Add(drManufacturer);

 }

 try

 {

 // now update the database

 myAdapter.Update(myDataSet, "Manufacturer");

 // show the result

 QueryResult.Text = "Save of manufacturer was successful";

 // disable all the controls we don't want to allow changes to

 SaveButton.Enabled = false;

 ManufacturerName.Enabled = false;

 ManufacturerCountry.Enabled = false;

 ManufacturerEmail.Enabled = false;

 ManufacturerWebsite.Enabled = false;

 }

 catch (Exception ex)

 {

 // show the error

 QueryResult.Text = "An error has occurred: " + ex.Message;

 }

 }

}

6. Save both pages, and then open Manufacturer.aspx in your browser. Clicking any of the

Edit buttons in the GridView will allow you to modify the selected Manufacturer. You can

confirm the changes have been made by looking at the complete list of Manufacturers.

How It Works

You’ve added the ability to edit Manufacturers with only minimal changes to the page.

We’ll look at each of these changes in turn.

Populating the Controls on Load

Now that you’re editing an existing Manufacturer, rather than adding a new Manufacturer,

you must retrieve the list of Manufacturers and then select the correct Manufacturer. This is

accomplished quite easily by using the Find() method of the Rows collection for the DataTable

and specifying the primary key for the row that you want to retrieve:

// find the one we're after

DataRow drManufacturer = myDataSet.Tables["Manufacturer"].

 Rows.Find(Request.QueryString["ManufacturerID"]);

This returns a DataRow that you can interrogate to retrieve the column values that you’re

after and set the TextBox controls correctly.

360 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

Editing a Row in the Table

When editing a row, you no longer need to add a new DataRow to the DataTable; you can use the

existing row. Therefore, you check whether you’re performing an insert or an update by checking

to see if there is a ManufacturerID in the query string. If there isn’t, you want to create a new

row, as before:

if (Request.QueryString["ManufacturerID"] == null)

{

 // create a new DataRow

 drManufacturer = myDataSet.Tables["Manufacturer"].NewRow();

}

If the query string does have a ManufacturerID, you retrieve the existing DataRow using the

primary key to find the correct ManufacturerID:

else

{

 // find the one we're after

 drManufacturer = myDataSet.Tables["Manufacturer"].Rows.

 Find(Request.QueryString["ManufacturerID"]);

}

You then set the column values based on the TextBox controls in exactly the same way

as before.

Next, you check to see if you’re adding or editing a Manufacturer. If you’re adding one, you

set the temporary primary key value and add the new DataRow to the DataTable.

Saving the Changes to the Database

The code to save the changes to the database is exactly the same as before. The Update() method

commits all changes to the database and chooses the UpdateCommand in this instance.

If you look at the query in the RowUpdating event handler, you’ll see that the UPDATE query

is a lot more complex than you might expect:

UPDATE Manufacturer SET ManufacturerName = @p1 WHERE

((ManufacturerID = @p2) AND (ManufacturerName = @p3)

AND ((@p4 = 1 AND ManufacturerCountry IS NULL) OR

(ManufacturerCountry = @p5)) AND ((@p6 = 1 AND

ManufacturerEmail IS NULL) OR (ManufacturerEmail = @p7)) AND

((@p8 = 1 AND ManufacturerWebsite IS NULL)

OR (ManufacturerWebsite = @p9)))

This is the query generated when you change only the ManufacturerName. If you changed

all four values (name, country, e-mail address, and Web site address), the query becomes even

more complex, with twelve parameters rather than the nine here. The UPDATE query is generated

on the fly and updates only the columns that have been modified, but does it really need to be

this complex?

Although this UPDATE query works, it isn’t as efficient as it could be. You’ll see shortly that

you can add your own queries, rather than using the CommandBuilder auto-generated ones.

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 361

Try It Out: Deleting Data Using a DataSet

You’ll now add the final part of the page to delete Manufacturers from the database.

1. Open Manufacturers_Edit.aspx. In the Design View, add a new Button called

DeleteManufacturer to the page beside the Save Player button. You can see how

the Web controls are laid out in Figure 8-17.

Figure 8-17. The new Web control layout for Manufacturer_Edit.aspx

2. Double-click the Delete Manufacturer button to add the Click event, and add the

following code to the event handler:

protected void DeleteButton_Click(object sender, EventArgs e)

{

 // load all the manufacturers

 RetrieveManufacturers();

 // find the one we're after

 DataRow drManufacturer = myDataSet.Tables["Manufacturer"].Rows.

 Find(Request.QueryString["ManufacturerID"]);

362 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

 // delete it

 drManufacturer.Delete();

 try

 {

 // now update the database

 myAdapter.Update(myDataSet, "Manufacturer");

 // show the result

 QueryResult.Text = "Delete of manufacturer was successful";

 // disable all the controls we don't want to allow changes to

 SaveButton.Enabled = false;

 DeleteButton.Enabled = false;

 ManufacturerName.Enabled = false;

 ManufacturerCountry.Enabled = false;

 ManufacturerEmail.Enabled = false;

 ManufacturerWebsite.Enabled = false;

 }

 catch (Exception ex)

 {

 // show the error

 QueryResult.Text = "An error has occurred: " + ex.Message;

 }

}

3. Modify the Page_Load event handler to disable the Delete Manufacturer button if you’re

adding a new Manufacturer, as follows:

protected void Page_Load(object sender, EventArgs e)

{

 if (Page.IsPostBack == false)

 {

 // only load if we have a manufacturer

 if (Request.QueryString["ManufacturerID"] != null)

 {

 // load all the manufacturers

 RetrieveManufacturers();

 // find the one we're after

 DataRow drManufacturer = myDataSet.Tables["Manufacturer"].

 Rows.Find(Request.QueryString["ManufacturerID"]);

 // set the four controls

 ManufacturerName.Text =

 drManufacturer["ManufacturerName"].ToString();

 ManufacturerCountry.Text =

 drManufacturer["ManufacturerCountry"].ToString();

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 363

 ManufacturerEmail.Text =

 drManufacturer["ManufacturerEmail"].ToString();

 ManufacturerWebsite.Text =

 drManufacturer["ManufacturerWebsite"].ToString();

 }

 else

 {

 // we want to disable the delete button

 DeleteButton.Enabled = false;

 }

 }

}

4. Modify the end of the SaveButton_Click event handler and add the code to disable the

Delete Manufacturer button:

// disable all the controls we don't want to allow changes to

SaveButton.Enabled = false;

DeleteButton.Enabled = false;

ManufacturerName.Enabled = false;

ManufacturerCountry.Enabled = false;

ManufacturerEmail.Enabled = false;

ManufacturerWebsite.Enabled = false;

5. Save the page, and then open Manufacturers.aspx in your browser. If you click the Edit

button for a Manufacturer, you’ll see that you can now delete the Manufacturer.

How It Works

Once again, you see that deleting is the easiest thing to do. First, you retrieve the DataRow that

you’re after:

// find the one we're after

DataRow drManufacturer = myDataSet.Tables["Manufacturer"].Rows.

 Find(Request.QueryString["ManufacturerID"]);

And then you delete it:

// delete it

drManufacturer.Delete();

This changes the RowState to Deleted. When the Update() method is called, the DeleteCommand

is used, and the following auto-generated query is executed:

DELETE FROM Manufacturer WHERE ((ManufacturerID = @p1)

AND (ManufacturerName = @p2) AND ((@p3 = 1

AND ManufacturerCountry IS NULL) OR (ManufacturerCountry = @p4))

AND ((@p5 = 1 AND ManufacturerEmail IS NULL) OR

(ManufacturerEmail = @p6)) AND ((@p7 = 1 AND

ManufacturerWebsite IS NULL) OR (ManufacturerWebsite = @p8)))

364 C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E

As with the UPDATE query, the DELETE query works, but is perhaps overly complex. You

should be able to delete a Manufacturer using one parameter (the ManufacturerID), but this

DELETE query has nine parameters! It’s definitely time to look at creating your own queries.

Manually Creating the Commands

You’ve seen in the previous three examples that you can use a CommandBuilder to automatically

create the INSERT, UPDATE, and DELETE queries. Although the INSERT query was quite acceptable,

the UPDATE and DELETE queries are a little complex (to say the least!).

It is easy to create your own INSERT, UPDATE, and DELETE queries, rather than letting a

CommandBuilder do it for you. As an example, let’s look at how to add an UPDATE query.

■Caution If you’re not using a CommandBuilder and don’t define a Command object for the operation that

you’re performing, you’ll get an InvalidOperationException if you try to perform that operation.

You first need to define the Command object that you want to use (assuming that

myConnection is already defined as a Connection object):

// query to execute

string strQuery = "UPDATE Manufacturer SET

 ManufacturerName = @ManufacturerName,

 ManufacturerCountry = @ManufacturerCountry,

 ManufacturerEmail = @ManufacturerEmail,

 ManufacturerWebsite = @ManufacturerWebsite,

 WHERE ManufacturerID = @ManufacturerID;";

// create the command

SqlCommand myCommand = new SqlCommand(strQuery, myConnection);

You then need to add all of the parameters to the Command object. But how do you know

what the values are? How do you query the DataTable to get the correct parameters? You need

to use the SourceColumn property to determine the specific column from the DataTable and the

SourceVersion property to specify which version of the column (Current or Original) you’re

after. So, the ManufacturerName parameter is created as follows:

SqlParameter myNameParameter = new SqlParameter();

myNameParameter.ParameterName = "@ManufactuereID";

myNameParameter.SourceColumn = "ManufacturerID";

myNameParameter.SourceVersion = DataRowVersion.Current;

And then added to the Parameters collection as follows:

myCommand.Parameters.Add(myNameParameter);

C H A P T E R 8 ■ W R I T I N G T O T H E D A T A B A S E 365

The remaining four columns are created in the same way. You specify the SourceColumn as

the name of the column and the SourceVersion to be the Current version.

■Note When we look at concurrency in Chapter 12, you’ll see that you sometimes use the Original

version of a column to ensure that the data that you’re changing hasn’t changed between deciding to change

the data and actually getting around to changing the data.

Creating your own INSERT and UPDATE queries follows the same pattern.

Summary
While a SQL query is at the center of every data operation—SELECT, INSERT, UPDATE, or DELETE—

you have many ways to get that SQL query defined and executed, and its results examined.

You can do almost anything you like as long as you form the SQL correctly and obey the rules

of the database you’ve defined.

You shouldn’t regard the examples in these chapters as the dogmatic way to do any one

particular task. Their purpose is to present various techniques that you may or may not choose

to use in your own pages. Whether you use any one block of code is up to you, but you do at

least now know where some code works and where other code doesn’t work.

In the next chapter, we’ll move away from writing code to modify the database and see

that the GridView (and its siblings the DetailsView and FormView) allows you to write pages that

will automatically propagate the changes to the database, provided that you specify the correct

INSERT, UDPATE, and DELETE queries.

